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The Extended Fourier Transform for 2D Spectral Estimation
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We present a linear algebraic method, named the eXtended
Fourier Transform (XFT), for spectral estimation from truncated
time signals. The method is a hybrid of the discrete Fourier
transform (DFT) and the regularized resolvent transform (RRT)
(J. Chen et al., J. Magn. Reson. 147, 129–137 (2000)). Namely, it
estimates the remainder of a finite DFT by RRT. The RRT estima-
tion corresponds to solution of an ill-conditioned problem, which
requires regularization. The regularization depends on a parame-
ter, q, that essentially controls the resolution. By varying q from
0 to ∞ one can “tune” the spectrum between a high-resolution
spectral estimate and the finite DFT. The optimal value of q is
chosen according to how well the data fits the form of a sum of
complex sinusoids and, in particular, the signal-to-noise ratio. Both
1D and 2D XFT are presented with applications to experimental
NMR signals. C© 2001 Academic Press

Key Words: extended Fourier transform; spectral estimation; res-
olution enhancement; regularized resolvent transform; filter diago-
nalization method.
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1. INTRODUCTION

In this paper we are concerned with the problem of spectra
stimation from truncated 1D and 2D time signals, which is th
ntral problem of data processing in a number of experimen

ased on Fourier transform (FT) spectroscopy and, in particula
MR spectroscopy.
Consider a 1D time signalc(n) := c(nτ ) (n = 0, . . . , N − 1)
at has been sampled discretely on an equidistant set of tim
oints. The infinite time discrete Fourier transformation (DFT∞)
f c(n) is then defined as

I (s) =
∞∑

n=0+
c(n)z−n :=

∞∑
n=0

(
1− δn0

2

)
c(n)z−n, [1]

ith z = e−i τs. (The “shortcut”
∑

n=0+ , meaning that the first
rm in the sum is multiplied by12, will be used throughout the

aper. This multiplication corrects the error due to the discretiza
n of the half-line Fourier integral.) A finite DFT can be used
estimateI (s):

I (s) ≈ DFTN(s) =
N−1∑
n=0+

c(n)z−n. [2]
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FTN gives spectral resolutionδs ∼ 2π/Nτ . This slow con-
rgence behavior is known as the FT uncertainty principle. Fo
ample, peaks that are separated by less than 2π/Nτ cannot be
scerned. The DFT resolution can also be affected by an artifa
own as Gibbs oscillations. This arises from an abrupt trunca
n of the signal, giving small wiggles in the baseline of the
ectrum, affecting the resolution by obscuring weak signals

ibbs oscillations are normally suppressed by weighting th
e signal with an appropriate apodization function, allowing

e signal to smoothly decay to 0 within the sampling interval
owever, this also results in an additional, slight broadening o
e lines, further reducing the resolution.
A number of methods that try to overcome the DFT limita-
ns have been suggested in the past for high-resolution spect
timation from truncated data sets. Typically, the higher reso
tion is obtained by incorporating some additional information
out the signal that is ignored in the DFT processing. Amon
ch methods, the most relevant to the present framework a
e autoregression (AR) techniques (see, e.g., Ref. (1) and ref-
ences therein), i.e., based on the assumption that there exi
numberK , so that the data satisfies the AR form

c(n) =
K∑

p=1

apc(n− p). [3]

N ≥ 2K , one can now solve Eq. [3] for the prediction co-
ficientsap and then use them directly (see, e.g., (2, 3)) to
tend the available time domain data to times longer than th
mpling interval. The extended signal is then transformed wit
DFT. Note that Eq. [3] is also commonly referred to as the
ear prediction (LP) assumption. It can be shown that for a
neral case it is equivalent to assuming that the signal is com
sed ofK complex sinusoids with complex frequenciesωk and
plitudesdk,

c(n) =
K∑

k=1

dkun
k, [4]

ith uk= e−i τωk . A number of parameter estimation methods
ve been developed to solve the harmonic inversion proble
IP) for the unknownsuk anddk as defined by Eq. [4] (see, e.g.,
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XFT: THE EXTENDE

Refs. (1, 4–8) and references therein). The computed sp
parametersuk anddk can be used to construct the spectrumI (s
The important common aspect of most such methods is th
may be formulated purely within the linear algebraic frame
making them computationally very efficient compared to
a general nonlinear parametric fit problem. However, a
mon difficulty, encountered in the techniques for solving
the spectral or parameter estimation problem, is their no
ill-defined nature and various instabilities, especially in
when the data do not fit the AR assumption [3]. Moreove
difficulties increase for large and/or multidimensional dat

The filter diagonalization method (FDM), introduced rec
(8–15) belongs to the class of AR techniques, although
derived using a different assumption about the data, form
in terms of the quantum time autocorrelation function w
effective (complex symmetric) evolution operatorÛ and initi
state8 (9):

c(n) = (8|Û n|8). [5

Here (a|b) = (b|a) denotes the complex symmetric inner p
uct. Equation [5] turns out to be equivalent to both Eqs. [3
[4] if we assumeK to be the rank ofÛ with eigenvaluesu
If we now define the corresponding eigenfunctions asϒk, th
amplitudes becomedk= (8|ϒk)2. Thus, once a matrix repre
tation ofÛ is obtained in terms of the available data pointsc(n
the spectral parametersuk anddk are estimated from the co
sponding eigenvalue problem. The key difference betwee
and most other AR algorithms is the use of a Fourier sub
(9) that reduces a typically large linear algebraic problem
fined by the data size) to a small one. As such the actual
of FDM reveals when the data sets are large and in the
of multidimensional spectral analysis, where the quantu
chanical framework becomes very convenient to devise e
multidimensional linear algebraic algorithms. Note thoug
other Fourier subspace methods exist for 1D spectral a
such as LP-ZOOM (5) or beamspacing (see Ref. (16) and re
erences therein), although they are not commonly used
NMR data processing. (For a comparison of LP-ZOOM wi
FDM see Ref. (11).)

In another linear algebraic spectral estimation techniqu
ing from FDM and called regularized resolvent transform (
(17), the solution of either the AR Eq. [3] or the HIP [4
avoided. The spectrum is estimated directly using the res
formula derived by substituting the assumption [5] into Eq

I (s) =
∞∑

n=0+
(8|Û n|8)z−n = (8|

{ ∞∑
n=0

(Û/z)n − 1

2

}
|8)

= (8|
{

1

1− Û/z
− 1

2

}
|8). [6
When the data fit the Lorentzian assumption (i.e., one
equations [3], [4], or [5], which are all equivalent) well, b
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FDM and RRT give essentially identical and excellent re
However, in the case when this assumption is not satisfied
as for very short data sets and/or noisy signals, they may b
unstable or difficult to use. A common source of difficulty is
need to fiddle with the parameters of the method to achie
acceptable compromise between high spectral resolution
bly with spurious or poorly converged peaks) and low reso
(with all artifacts suppressed). Figure 1 illustrates the prob
associated with spectral estimation. The 2D RRT spectra
mate of a sufficiently large data set (N1×N2 = 16×300) is ver
well converged and gives a superior resolution to the fini
DFT spectral estimate. Quite unfortunately, 2D RRT has s
convergence. That is, when the data is truncated below som
ical size (e.g.,N1× N2= 8× 32), it fails catastrophically, pr
ducing unacceptable lineshapes and some missing pea
DFT of the same truncated data gives a uniform low-reso
spectral estimate, although producing strong Gibbs oscilla
Because the finite DFT spectral estimate is not governed
assumptions, it is straightforward to use, is well understood
as such, is most commonly used. It is often desirable to h
controllable procedure that corrects the DFT by, e.g., sup
ing the Gibbs oscillations and improving the resolution, at
for the peaks with Lorentzian lineshapes. This strategy is, in
ciple, well known and can be implemented in the framewo
most nonlinear spectral or parameter estimators. For ex
LP is most commonly used to extend the data to longer
followed by DFT processing. However, because of variou
ficulties associated with appearance in the line list of com
poles,uk, outside the unit circle,|uk| > 1, the extrapolation m
be difficult to implement because of the exponential inst
ties. Several prescriptions for combining DFT with FDM h
been suggested previously (9, 14). However, those appeare
be difficult to extend to a 2D case, in particular, becaus
spectral parameters in 2D are much harder to obtain, and
it is hard to reconstruct a 2D signal. In this paper we prop
procedure, named the eXtendedFourierTransform (XFT), th
can be used to correct the 1D and 2D DFT spectral estim
a controllable fashion by adding a, generally, small corre
term computed by RRT. That is, an XFT spectral estimate
be written in the form

I (s) ≈ XFTN = DFTN +1N, [7

where the second term is an RRT-based estimate of theNth DFT
remainder,

1N =
∞∑

n=N

c(n)z−n. [8

The XFT, therefore, extracts spectral features lost by li
tions of the finite DFT. The RRT requires regularization
pending on a parameter,q, that controls the artifact suppres
of the
oth

and level of resolution. Whenq = ∞ the correction,1N , van-
ishes (low resolution); finite values ofq give nonzero correction
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FIG. 1. Chemical shift correlation spectra of the metalloprotein rubredoxin. The RRT for the severely truncated data gives nonuniform lineshapes an
ome of the features. The DFT for the severely truncated data has correct lineshapes and features, but has artifacts due to the truncation. The XFTle to
ield the DFT spectrum without artifacts even when the high-resolution estimation fails. In this example, the spectra have been calculated with spectral widths of

500× 1600 Hz, with 200 spectral points in each dimension. The RRT and XFT spectra for the truncated data were both obtained usingK = 32. The RRT of
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he longer signal hadKwin = 80.

high resolution), provided the data have not decayed to zero d
ing the acquisition period. Using exact arithmetic for data set
atisfying, e.g., the form [4] withN ≥ 2K and infinitesimally
mall values ofq, the XFT estimate gives the exact result. It
hould be emphasized that1N is not computed by processing
ny kind of residual signal or by extrapolating the data. Be
ause extrapolation is avoided, the common exponential inst
ility does not occur in XFT. An example of 2D XFT in action

s shown in Fig. 1. It is clear that, although the resolution en
ancement of the spectrum, compared to DFT, is not enormou

n this case of severely truncated data, XFT does suppress t
FT artifacts and reveals some small spectral features that a
issing in the DFT spectrum. At the same time, the XFT line

hapes remain well behaved. In the next sections we derive t
D and 2D XFT and examine their behavior using both 1D an
D NMR data.

2. 1D XFT

The correction term [8] is estimated by analogy with Eq. [6]
sing Eq. [5],

1N =
∞∑

n=N

(8|(Û/z)n|8) = z−N

(
8M

∣∣∣∣∣ ∞∑
n=0

(Û/z)n

∣∣∣∣∣8N−M

)
( ∣ ∣ )

f
U
t
u
e
la
M
m
[
p

N
r

w

n

= 8M

∣∣∣ z−N

1− Û/z

∣∣∣8N−M , [9] ba
A

win

-

-

,
e
e

e

r anyM ≤ N, where we have defined the state vectors8n :=
n8. It is convenient to chooseN = 2M . We can now evaluate
e corresponding matrix element of the resolvent in Eq. [9
ing the basis{8n} (n = 0, . . . ,M − 1). (A more numerically
ficient basis is a Fourier-type basis, but this will be discusse
ter.) Given the assumption [5], the elements of the squareM×
overlap matrix [U0]nm := (8n|8m), the evolution operator

atrix [U1]nm := (8n|Û |8m) and the columnM × 1 vector
m]n := z−m(8n|8m) are given in terms of the available signal
intsc(n):

[U1]nm = c(n+m+ 1),

[U0]nm = c(n+m), [10]

[Cm]n = z−mc(n+m).

ow by replacing8M and (1− Û/z) in Eq. [9] by their matrix
presentations [10], the correction term becomes

1N ≈ CT
MR−1CM [11]

ith the M × M matrix-pencilR = U0− U1/z andN = 2M .
Numerical solution of Eq. [11] may scale as∼N3 if one does
t take advantage of the special Hankel structure ofR. A Fourier

sis has proven to be very efficient for such problems (9, 10).
small Fourier subspace{8̃ j } of sizeKwin¿M is constructed
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XFT: THE EXTENDE

by choosingKwin complex numbers on the unit circleyj =
e−i τϕ j ( j = 1, . . . , Kwin) and using

8̃ j =
M−1∑
n=0

y−n
j 8n. [12

(In this paper the tilde over vectors or matricies will symb
the expression in the Fourier basis.) The efficiency of the F
basis depends on how the pointsϕ j are chosen. In most ca
an equidistant grid is effective, with spacing

1ϕ = 2π

ℵMτ
[13

and adjusting parameterℵ≥1 (e.g., one can useℵ=1.2). Sinc
the basis is localized in the frequency domain, the dia
elements of the matricies will dominate, and the off-dia
elements will drop off as a sinc function. This allows an
rate estimate of the inverseR−1 in a small subspace, lea
to numerically cheap matrix inversion. A further gain ma
achieved by using a multiscale Fourier basis (14) with a nonun
form set ofϕ j , containing information about the entire spec
rather than just the spectral window. The multiscale basis
used here for simplicity.

The matrix elements of theKwin × Kwin square matrices̃U
andŨ0 can be computed using (10)

[Ũp] j j ′ = Ŝ
∑
σ=0,1

(−1)σ (yj /yj ′ )σM

1− yj /yj ′

(σ+1)(M−1)∑
n=σM

y−n
j c(n+ p),

[14

whereŜdefines the symmetrization operator over the var
yj andyj ′ ,

Ŝ g(yj , yj ′ ) = g(yj , yj ′ )+ g(yj ′ , yj ). [15

For j = j ′ we have

[Ũp] j j =
2M−2∑
n=0

y−n
j (M − |M − n− 1|)c(n+ p). [16

Themth state vector8m in the Fourier basis is aKwin×1 colum
vector with elements

[C̃m] j = z−m
M−1∑
n=0

y−n
j c(n+m). [17

Now defining theKwin× Kwin matrix-pencilR̃ = Ũ0− Ũ1/z i
the Fourier basis, the correction term becomes
1N ≈ C̃T
M R̃−1C̃M . [18
D FOURIER TRANSFORM 2
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Since a small subspace, rather than the complete basi{8n}
is used to evaluate the resolvent, the expression [18] m
viewed as an approximation to Eq.[11] with convergenc
rameterKwin. However, an acceptable convergence is us
achieved for sufficiently small sizes in the rangeKwin∼ 10
100. Moreover, in the Fourier basis, the matrices are muc
ill-conditioned, which makes them easier to handle numer

Just like in RRT (17), numerical evaluation of the resolven
Eq. [18] requires regularization. For example, in the case
Eq. [5] is satisfied exactly (i.e., the Lorentzian assumpt
exact) for the signalc(n), the rank ofR is K if M > K , so th
full M ×M matrix R is singular and, therefore,R−1 does n
exist. In a Fourier basis representation with smallKwin¿ K
the Kwin× Kwin matrix R̃ will not be exactly singular. Mo
over, in the presence of noise it would unlikely be singula
anyKwin. However, it can still be ill-conditioned. There are
eral methods to deal with this situation (18), such as Tikhon
regularization (17, 19), but in this paper we consider the sing
value decomposition (SVD). Although the latter is numeri
more expensive than the former, it can still lead to a num
saving when results at several regularization levels are n
The SVD of the square matrix̃R is defined by

R̃ = V†ΣW [19

with unitary matricesV andW andΣ= diag(σn), real and d
agonal;V† defines the Hermitian conjugate ofV. Since we c
now write R̃−1=W†Σ−1V, the problem then becomes tha
regularizing the diagonal matrixΣ−1. Here the truncated S
(i.e., setting [6−1

q ]nn = 0 for very small singular valuesσn be
low a certain threshold) is not recommended. Instead, a
uniform regularization may be employed using, for examp

[
Σ−1

q

]
nn
=
{
σ−1

n , if σn > q

q−1, otherwise,
[20

or [
Σ−1

q

]
nn
= σn

σ 2
n + q

. [21

In this paper we employed Eq. [21], while we were infor
recently that Eq. [20] could be more effective (20).

Regularization leads to the ultimate well-behaved expre
to evaluate the correction in the 1D XFT,

1N ≈ C̃T
MW†Σ−1

q VC̃M , [22

which is one of the main results of this paper.
The properties of the DFT term used in Eq. [7] may n

ideal: the DFT is calculated for a truncated data set and
apodized. For this reason, the Gibbs oscillations in the spe
]
are quite intense. These artifacts are compensated for by the cor-
rection in the XFT which, in turn, must be large and oscillatory.
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lthough in our numerical tests this did not cause problems, po
entially, it can be a source of instability. For this reason it may be
eneficial to calculate a correction to the already apodized DF
pectrum, so that the large oscillations need not be compensat
or. An example of such procedure is given in the Appendix.

.1. Numerical Example: 1D XFT

The XFT of an experimental NMR data set can be examined t
etermine the role of each term. This is best accomplished in th
D case as the correction to the baseline is evident. In Fig. 2 w
how an interesting spectral region of 12H -pyrido[1,2-a : 3,4-
]diinole processed by DFT and XFT. The DFT was calculated
sing bothN = 32000 andN = 5000 data points for compari-
on (upper traces). The lower three traces were computed usi
nly 5000 of the available data points, which is short enough

hat the DFT spectrum results in some truncation artifacts, suc
s Gibbs oscillations, and insufficient resolution to resolve the
oublets present in the DFT using 32,000 points. The correctio
the bottom trace) has oscillations equal and opposite to the o
illations in the DFT. When added together these cancel, givin
he correct baseline in the XFT spectrum. Furthermore, the co
ection also contains features that improve the resolution of th
FT, revealing some splittings that could not be obtained with

FIG. 2. An interesting region of the 1D NMR spectrum of 12H -pyrido[1,2-
: 3,4-b]diinole, processed by the XFT using a truncated (N= 5000) data set.
he figure illustrates the behavior of each term involved in the calculation of the
FT. The XFT is obtained by adding together the unapodized DFT term and th
orrection term calculated with a regularization parameter ofq that is optimized
or this case. The correction term exactly cancels the Gibbs oscillations prese

q
(N
fu
in
th
sp

th
ra
It
th
th

q
th
s
th
s
in
s

re
is
W
ti
X
re
n the nonapodized DFT. It also adds small terms to increase the resolution of
ome peaks, allowing some doublet structures to be identified. For comparison
he apodized DFT spectra forN= 32000 andN= 5000 are presented.

A
ce
NDELSHTAM

d

-

IG. 3. The XFT spectra generated for a range of regularization paramete
re compared to the DFT spectrum using the same number of data poin
= 5000). The latter was apodized with a cosine weighting function. The

converged DFT spectrum using the entire data set is also shown. Asq
eases, the XFT loses resolution, but still contains as much information a
DFT. In this case, the optimal value forq is around 1×10−5, where the small
ttings can be resolved with artifacts of the nonlinear processing suppresse

truncated DFT alone. In this example the regularization pa
eterq was optimized for maximum resolution enhancement.

hould be noted that an optimalq is roughly proportional to
factorN = N

∑N−1
n=0 |c(n)|, so it is convenient to consider

scaled quantityq→ q/N , which has a sensible order.
ow we examine the behavior of the XFT as a function of

For very largeq, the regularization parameter will dominate
resolvent and the correction will be zero. In this case, the

ectrum will be identical to the DFT. Whenq is very small,
correction term will be nonzero, yielding a high-resolution

ectral estimate similar to the RRT (17) spectral estimate. For
ermediate values ofq, XFT will generally give different re-
lts from the RRT.
he effect of changingq is demonstrated in Fig. 3. For no
ularization (q= 0), an artifact is present at−650 Hz, which

removed by performing the calculation withq= 5× 10−5.
en q is set quite high (q= 0.5), the XFT becomes essen-

lly equivalent to the apodized DFT. In this manner, even if the
T cannot increase the resolution, it can still smooth the DFT,
oving the Gibbs oscillations.

3. 2D XFT
lthough the 1D XFT is interesting for evaluating the suc-
sses and limitations of the method, it is the multidimensional
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generalization of XFT that is most useful. The simple rea
that there is usually no acquisition time limitation in 1D N
experiments. In 2D, however, the difficulties associated w
data truncation are much more pronounced. As shown in
the high-resolution techniques, such as RRT, can be use
successfully with signals severely truncated along the int
metric dimensions, provided the total size,N1 × N2, of the 2
data array is sufficiently large. WhenN1×N2 is too small, RR
may fail catastrophically. XFT is manifestly a much less ag
sive method as it tries to correct the DFT spectrum in a co
lable fashion, sometimes giving only marginal improveme
sometimes leading to a significant resolution enhanceme

We consider a 2D time signal on an evenly spaced 2D
grid c(n1, n2) := c(n1τ1, n2τ2). The goal is then to estimate
infinite time 2D DFT spectrum using the scheme

I (s1, s2) =
∞∑

n1=0+

∞∑
n2=0+

z−n1
1 z−n2

2 c(n1, n2)

= DFTN1N2 +11+12+13 [23

with z1= e−i τ1s1 andz2= e−i τ2s2. The finite 2D DFT and the th
correction terms arise from breaking the infinite 2D summ
domain into four rectangular regions:

DFTN1N2 =
N1−1∑

n1=0+

N2−1∑
n2=0+

z−n1
1 z−n2

2 c(n1, n2)

11 =
N1−1∑

n1=0+

∞∑
n2=N2

z−n1
1 z−n2

2 c(n1, n2)

12 =
∞∑

n1=N1

N2−1∑
n2=0+

z−n1
1 z−n2

2 c(n1, n2)

13 =
∞∑

n1=N1

∞∑
n2=N2

z−n1
1 z−n2

2 c(n1, n2). [24

Generalizing the 1D quantum ansatz [5] the 2D signal
sumed to be generated by two commuting complex sym
evolution operatorŝU1 andÛ2:

c(n1, n2) = (8 ∣∣Û n1
1 Û n2

2

∣∣8) . [25

Now using 2M1= N1 and 2M2= N2 and defining8n1,n2 :=
Û n1

1 Û n2
2 8, by analogy with Eq. [9], we can write

11 =
M1−1∑
n1=0+

z−n1
1

(
8n1,M2

∣∣∣∣∣ z−2M2
2

1− Û2/z2

∣∣∣∣∣80,M2

)
M1−1∑ ( ∣∣z−M1z−2M2

∣∣ )

+

n1=0

z−n1
1 8n1,M2

∣∣∣ 1 2

1− Û2/z2

∣∣∣8M1,M2 ,
D FOURIER TRANSFORM 27
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12 =
M2−1∑
n2=0+

z−n2
2

(
8M1,n2

∣∣∣∣∣ z−2M1
1

1− Û1/z1

∣∣∣∣∣8M1,0

)

+
M2−1∑
n2=0

z−n2
2

(
8M1,n2

∣∣∣∣∣z−M2
2 z−2M1

1

1− Û1/z1

∣∣∣∣∣8M1,M2

)
, [26

13 =
(
8M1,M2

∣∣∣∣∣ z−2M1
1

1− Û1/z1

z−2M2
2

1− Û2/z2

∣∣∣∣∣8M1,M2

)
.

The arising resolvent matrix elements can now be eval
on the basis8n1,n2 of size M1×M2. However, as in the 1
case, it is advantageous to implement a Fourier basis. The
is introduced by selecting aK1win× K2win= Kwin grid of point
(ϕ1 j , ϕ2 j ) in a chosen 2D frequency window with spacings g
by Eq. [13],

8̃ j =
M1−1∑
n1=0

M2−1∑
n2=0

y−n1
1 j y−n2

2 j 8n1,n2, [27

with y1 j = e−inτ1ϕ1 j and y2 j = e−inτ2ϕ2 j . The square compl
symmetric matrices ofÛ1, Û2 and the identity operator (t
overlap matrix) in this basis are defined byŨ1, Ũ2, andŨ0, ac
cordingly. Their matrix elements are given here without de
tion (see Ref. (11)). To consolidate the expressions, three
data sets are defined:

c0(n1, n2) := c(n1, n2),

c1(n1, n2) := c(n1+ 1, n2), [28

c2(n1, n2) := c(n1, n2+ 1).

The matrix elements of theU matrices for bothy1 j 6= y1 j ′ and
y2 j 6= y2 j ′ can be computed by

[Ul ] j j ′ = Ŝ1

∑
σ1=0,1

(−1)σ1(y1 j /y1 j ′ )σ1M1

1− y1 j /y1 j ′

×Ŝ2

∑
σ2=0,1

(−1)σ2(y2 j /y2 j ′ )σ2M2

1− y2 j /y2 j ′

×
(σ1+1)(M1−1)∑

n1=σ1M1

(σ2+1)(M2−1)∑
n2=σ2M2

y−n1
1 j y−n2

2 j cl (n1, n2), [29

whereŜ1 and Ŝ2 define the symmetrization operators ove
corresponding pairs of variables as, e.g.,
Ŝ1g(y1 j , y1 j ′ ) = g(y1 j , y1 j ′ )+ g(y1 j ′ , y1 j ). [30]
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or y1 j = y1 j ′ andy2 j 6= y2 j ′ we have

[Ul ] j j ′ = Ŝ2

∑
σ2=0,1

(−1)σ2(y2 j /y2 j ′ )σ2M2

1− y2 j /y2 j ′

×
2M1−2∑
n1=0

(σ2+1)(M2−1)∑
n2=σ2M2

y−n1
1 j y−n2

2 j cl (n1, n2)

×(M1− |M1− n1− 1|), [31]

hich can trivially be rewritten for the symmetric case ofy1 j 6=
1 j ′ andy2 j = y2 j ′ . For the case of bothy1 j = y1 j ′ andy2 j =
2 j ′ , i.e., the diagonal elements of theU matrices, we have

[Ul ] j j =
2M1−2∑
n1=0

2M2−2∑
n2=0

y−n1
1 j y−n2

2 j cl (n1, n2)

×(M1− |M1− n1− 1|)(M2− |M2− n2− 1|). [32]

TheU matrices are used to construct the matrix pencils

R̃l = Ũ0− Ũl/zl , (l = 1, 2). [33]

Now define theKwin×1 column vectors̃Cm1,m2 with elements
C̃m1,m2] j := z−m1

1 z−m2
2 (8̃ j |8m1,m2), which can be computed

sing

C̃m1,m2] j = z−m1
1 z−m2

2

×
M1−1∑
n1=0

M2−1∑
n2=0

y−n1
1 j y−n2

2 j c(n1+m1, n2+m2). [34]

n addition define the columnKwin×1 vectorsC̃FT,m2 andC̃m1,FT

btained fromC̃m1,m2 by summation along one of the dimen-
ions,

C̃FT,m2 =
M1−1∑
m1=0

C̃m1,m2,

C̃m1,FT =
M2−1∑
m2=0

C̃m1,m2. [35]

The numerical expressions for the correction terms in th
ourier basis can finally be written

11 = (C̃0,M2 + C̃M1,M2)
TR̃−1

2 C̃FT,M2 −
1

2
C̃T

0,M2
R̃−1

2 C̃0,M2,

12 = (C̃M1,0+ C̃M1,M2)
TR̃−1

1 C̃M1,FT− 1

2
C̃T

M1,0R̃−1
1 C̃M1,0,

13 = C̃T
M1,M2

R̃−1
1 Ũ0R̃−1

2 C̃M1,M2. [36]
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quations [23]–[36] constitute the main result of this paper
rmed with these equations we can construct the 2D XFT

s
n
e

ANDELSHTAM

e

lthough the above derivation may appear quite tedious, the
sult itself is straightforward: the arrays entering Eq. [36] are

ll obtained from the datac(n1, n2) by simple linear transforma-
ons involving DFT. Just as in the 1D case, numerical evaluation
f the resolvents̃R−1

1 andR̃−1
2 requires regularization, which is

plemented here using SVD (Eqs. [19]–[22]). Since usually
e results very smoothly depend on the regularization parame
rq, each resolvent can be treated with the sameq to reduce the
umber of adjusting parameters. Regularization by SVD, onc
gain, offers the advantage of generating multiple spectra wit
ifferentq, adding little numerical cost. Since each matrix pencil
epends on one of the frequenciess1 or s2, the total number of
VD applications to construct the 2D spectrum on the 2D grid
the frequency domainNs1 × Ns2 is only Ns1 + Ns2. Because
e most numerically expensive part of XFT is associated with
VD, the total numerical cost to construct 2D XFT scales as
(Ns1 + Ns2)× K 3

win, whereKwin is typically small (e.g., 100).

.1. Numerical Example: 2D XFT

Both FDM and RRT, the predecessors of XFT, have been
emonstrated previously to lead to significant resolution en
ancement (9, 17), provided the data fit well the Lorentzian
rm. As shown in Fig. 1, RRT may fail when the latter is not
e case (the data set is too small). In this case very strong reg
rization (largeq) is needed to remove the artifacts and correct
e lineshapes, eventually leading to a low-resolution spectrum
at may become even inferior to the DFT spectral estimate
nlike the FDM and RRT, the regularization in XFT does not
enerally reduce the resolution below that of the DFT; i.e., it is
ssentially bounded from below by the FT uncertainty princi-
le. Usually a compromise, corresponding to some finite value
f q, exists, leading to the Gibbs oscillation removal and resolv-
g some peaks (not necessarily all of them) that can be fitted b
orentzians. This is demonstrated in Fig. 4 where we present an
ther more challenging numerical test. Each of the XFT spectr
hown for different values ofq offer a resolution enhancement
ver the DFT, albeit the lineshapes are distorted for smaller val
es ofq. With q= 0.001, the regularization is optimal, and the
plittings are resolved without any artifacts present. The result
f two LP spectra, calculated using the NMRPipe program (21),
re presented as a comparison to the XFT. As XFT does no
se the data from the entire constant time period, it is compare

a standard LP algorithm. However, for constant time data
irror-image LP (MI-LP)(22) is commonly employed and is
lso presented. Both LP spectra show an improvement over th
T, but some peaks that are resolved by the XFT are not im
roved. Recently, using ideas similar to MI-LP, FDM has been
plemented to use data from the entire constant time perio

T (23), which effectively doubles the data size. This led to a
.
.

ubstantial resolution enhancement. Although this method has
ot yet been implemented for XFT, once it is implemented, we
xpect a further improvement.
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FIG. 4. Comparison of the XFT of a small region of the carbon–hydrogen CT-HSQC of Ubiquitin with the FT and LP methods. The spectra wer
for several values ofq to illustrate the behavior of the method. The XFT and FT spectra were processed using the entire data set (N1 = 316 andN2 = 2048) wit

a spectral width of 350 Hz in the proton dimension and 400 Hz in the carbon dimension. The calculation was performed for 200 spectral points in each dimension,

d using the

m
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s
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ic
a
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p
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p
s

or at

size

r
finite

ghting
. [4],
and for the XFT,Kwin = 60. The FT and LP spectra were apodized with
NMRPipe program.

4. SUMMARY

XFT has been presented as a useful spectral esti
method. The fact that XFT is a function of the regulariz
parameterq has the advantage of being able to tune the
trum between high-resolution spectral estimation and the
DFT. In the case where the data satisfy the Lorentzian as
tion [4] (or its 2D analogue), infinitesimally small regulariza
is required and the XFT gives essentially the exact infinite
DFT. If the Lorentzian assumption is not met, in the case
very short, or noisy signal, the level of resolution is controlle
adjusting the regularization. Only having a few paramete
need to be adjusted, and having a broad range over wh
parameters give usable results, also makes XFT much e
use than most other methods. XFT has numerous similar
the RRT, albeit the nonlinear contribution (the correction
in the former is generally relatively small. For this reason,
lems that may severely affect the performance of either FD
RRT may only cause small problems in the XFT.

The main disadvantage of the XFT is that, unlike FDM,
vidual resonances are not calculated and cannot be mani
afterward. While RRT can generate other spectral repre

tions (not necessarily the infinite time DFT spectral estim
XFT is restricted solely to the DFT spectral estimation. A
due to many resolvent matrix elements to be computed in
a cosine-squared function. The LP and the MI-LP are 16th order, calculate

ation
tion
pec-
finite
ump-
ion
time
of a

d by
that
h the

sier to
ies to
rm)
rob-
M or

di-
ulated
enta-

(see Eq. [36]), it is numerically more intensive than RRT,
least requires more intelligent programming.

APPENDIX

Alternative Expressions to Evaluate 1D XFT

Here we rewrite Eqs. [7] and [9] for variable truncation
N = m+m′

I (s) =
m+m′−1∑

n=0+
c(n)z−n +

(
8m

∣∣∣∣ z−(m+m′)

1− Û/z

∣∣∣∣8m′

)
= DFTm+m′ +1m+m′ ,

which holds for anym andm′. We can now averageI (s) ove
these two free parameters. This leads, in principle, to an in
number of possible expressions, depending on the wei
function. Interestingly, for the ideal data, i.e., satisfying Eq
ate),
lso,
XFT

any such expression would be numerically exact, while the dif-
ference would be observed in practical applications using non-
perfect signals. Here we derive just one such expression that is
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FIG. 5. The weighting functiongn, used in the averaged XFT DFT term.

ompact and numerically efficient,

I (s) = 1

(M + 1)2

M∑
m=0

M∑
m′=0

{DFTm+m′ +1m+m′ }

= DFTav+1av, [A.1]

here the first term simply becomes an apodized DFT

DFTav =
2M−1∑
n=0+

z−nc(n)gn [A.2]

ith weighting functiongn given by

gn = 1− (n+ 1)(n+ 2)

2(M + 1)2
, n ≤ M − 1

= (2M − n)(2M − n+ 1)

2(M + 1)2
, n ≥ M, [A.3]

hown in Fig. 5, which has a strong apodizing effect. On its
wn,gn might not be an optimal weighting function, but in XFT
he corresponding resolution loss can be compensated for. T
orrection term after averaging becomes

1av = CT
avR
−1Cav [A.4]

ith

Cav = 1

(M + 1)

M∑
m=0

z−mCm

ndCm is defined by Eq. [10].
In the Fourier basis the correction becomes

1av = C̃T
avR̃
−1C̃av, [A.5]

s

[C

n

C
s
N

1

1

1

here the expression for̃R is unaffected by averaging and the
lements ofC̃av are obtained by recognizing that its form is

13
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e

ilar to that ofŨ0 in Eq. [14] upon substitution ofyj ′ by z:

av] j ≡ Ũ0(z, yj )

=
∑
σ=0,1

(−1)σ (yj /z)σ (M+1)

1− yj /z

σM+M−1∑
n=σ (M+1)

y−n
j c(n)

+
∑
σ=0,1

(−1)σ(z/yj )σM

1− z/yj

σ (M−1)+M∑
n=σM

z−nc(n). [A.6]

This result can easily be generalized to the 2D case, which
t done here.
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