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We present a linear algebraic method, named the eXtended
Fourier Transform (XFT), for spectral estimation from truncated
time signals. The method is a hybrid of the discrete Fourier
transform (DFT) and the regularized resolvent transform (RRT)
(J. Chen et al., J. Magn. Reson. 147,129-137 (2000)). Namely, it
estimates the remainder of a finite DFT by RRT. The RRT estima-
tion corresponds to solution of an ill-conditioned problem, which
requires regularization. The regularization depends on a parame-
ter, q, that essentially controls the resolution. By varying g from
0 to oo one can “tune” the spectrum between a high-resolution
spectral estimate and the finite DFT. The optimal value of q is
chosen according to how well the data fits the form of a sum of
complex sinusoids and, in particular, the signal-to-noise ratio. Both
1D and 2D XFT are presented with applications to experimental
NMR signals. © 2001 Academic Press

Key Words: extended Fourier transform; spectral estimation; res-
olution enhancement; regularized resolvent transform; filter diago-
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1. INTRODUCTION

DFTy gives spectral resolutiofs ~ 27 /Nz. This slow con-
vergence behavior is known as the FT uncertainty principle. Fo
example, peaks that are separated by less thaN2 cannot be
discerned. The DFT resolution can also be affected by an artifa
known as Gibbs oscillations. This arises from an abrupt trunca
tion of the signal, giving small wiggles in the baseline of the
spectrum, affecting the resolution by obscuring weak signals
Gibbs oscillations are normally suppressed by weighting the
time signal with an appropriate apodization function, allowing
the signal to smoothly decay to 0 within the sampling interval.
However, this also results in an additional, slight broadening o
the lines, further reducing the resolution.

A number of methods that try to overcome the DFT limita-
tions have been suggested in the past for high-resolution spect
estimation from truncated data sets. Typically, the higher resc
lution is obtained by incorporating some additional information
about the signal that is ignored in the DFT processing. Among
such methods, the most relevant to the present framework a
the autoregression (AR) techniques (see, e.g., Rear(d ref-
erences therein), i.e., based on the assumption that there exi

In this paper we are concerned with the problem of spect@numberK, so that the data satisfies the AR form
estimation from truncated 1D and 2D time signals, which is the

K
central problem of data processing in a number of experiments c(n) = Z apc(n — p). [3]
based on Fourier transform (FT) spectroscopy and, in particular, p=1
NMR spectroscopy. -
Consider a 1D time signa(n) := c(nt) (n = N-1) If N > 2K, one can now solve Eg. [3] for the prediction co-

ﬁﬁ% ientsap and then use them directly (see, e.@, §) to
end the available time domain data to times longer than th
sampling interval. The extended signal is then transformed witl
a DFT. Note that Eq. [3] is also commonly referred to as the
linear prediction (LP) assumption. It can be shown that for &
general case it is equivalent to assuming that the signal is con
posed oK complex sinusoids with complex frequencigsand
with z = e7'*S. (The “shortcut”y_,_,:, meaning that the first amplitudegy,
term in the sum is multiplied bi, will be used throughout the

paper. This multiplication corrects the error due to the discretiza-

tion of the half-line Fourier integral.) A finite DFT can be used

to estimatd (s):

that has been sampled discretely on an eqwdlstant set of ti
points. The infinite time discrete Fourier transformation (R T
of c(n) is then defined as

Y ocmz =) (1 - 5—;0>c(n)z”, [1]

n=0* n=0

[(s) =

c(n) =

K
> duy. [4]
k=1

with u,=e "7, A number of parameter estimation methods

N-1
I (S) ~ DFTN(S) = Z c(n)z™". [2] have been developed to solve the harmonic inversion problel
n=0* (HIP) for the unknownsiy anddy as defined by Eq. [4] (see, e.g.,
1090-7807/01 $35.00 22
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Refs. (L, 4-8) and references therein). The computed spectf@dDM and RRT give essentially identical and excellent results
parameters anddy can be used to construct the spectri(s). However, in the case when this assumption is not satisfied, su
The important common aspect of most such methods is that tles/for very short data sets and/or noisy signals, they may becor
may be formulated purely within the linear algebraic frameworkinstable or difficult to use. A common source of difficulty is the
making them computationally very efficient compared to, e.gieed to fiddle with the parameters of the method to achieve &
a general nonlinear parametric fit problem. However, a cormeceptable compromise between high spectral resolution (pos
mon difficulty, encountered in the techniques for solving eithdaly with spurious or poorly converged peaks) and low resolutior
the spectral or parameter estimation problem, is their notoriofvgith all artifacts suppressed). Figure 1 illustrates the problem
ill-defined nature and various instabilities, especially in casassociated with spectral estimation. The 2D RRT spectral es
when the data do not fit the AR assumption [3]. Moreover, theate of a sufficiently large data séty(x N, = 16x 300) is very
difficulties increase for large and/or multidimensional data setsell converged and gives a superior resolution to the finite 2L
The filter diagonalization method (FDM), introduced recentlipFT spectral estimate. Quite unfortunately, 2D RRT has sudde
(8-15) belongs to the class of AR techniques, although it monvergence. Thatis, when the datais truncated below some ci
derived using a different assumption about the data, formulatedl size (e.g.N; x N, =8 x 32), it fails catastrophically, pro-
in terms of the quantum time autocorrelation function with aducing unacceptable lineshapes and some missing peaks. T
effective (complex symmetric) evolution operatdrand initial DFT of the same truncated data gives a uniform low-resolutiol
stated (9): spectral estimate, although producing strong Gibbs oscillation:
. Because the finite DFT spectral estimate is not governed by at
c(n) = (®|U"|®). [5] assumptions, itis straightforward to use, is well understood, an
o as such, is most commonly used. It is often desirable to have
Here @|b) = (bla) denotes the complex symmetric inner prodeontrollable procedure that corrects the DFT by, e.g., suppres
uct. Equation [5] turns out to be equivalent to both Egs. [3] anfdg the Gibbs oscillations and improving the resolution, at leas
[4] if we assumeK to be the rank ol with eigenvaluesik.  for the peaks with Lorentzian lineshapes. This strategy is, in prir
If we now define the corresponding eigenfunctionstasthe  ¢iple, well known and can be implemented in the framework o
amplitudes becom = (®|i)?. Thus, once a matrix represeNmost nonlinear spectral or parameter estimators. For exampl
tation ofU is obtained in terms of the available data pot(ty), | p is most commonly used to extend the data to longer time
the spectral parameteng andd are estimated from the corre-fo|lowed by DFT processing. However, because of various dif
sponding eigenvalue problem. The key difference between FQidties associated with appearance in the line list of comple
and most other AR algorithms is the use of a Fourier SUbSP%S‘(ﬂes,uk, outside the unit circlep| > 1, the extrapolation may
(9) that reduces a typically large linear algebraic problem (dge gifficult to implement because of the exponential instabili
fined by the data size) to a small one. As such the actual powk Several prescriptions for combining DFT with FDM have
of FDM reveals when the data sets are large and in the cagggp, suggested previouss, (L4. However, those appeared to
of multidimensional spectral analysis, where the quantum mgs gifficult to extend to a 2D case, in particular, because th
chanical framework becomes very convenient to devise effici%ectrm parameters in 2D are much harder to obtain, and, tht
multidimensional linear algebraic algorithms. Note though th@tis hard to reconstruct a 2D signal. In this paper we propose
other Fourier subspace methods exist for 1D spectral analy@igcedure, named th&éendedF ourier T ransform (XFT), that
such as LP-ZOOMY) or beamspacing (see Rel@) and ref-  can pe used to correct the 1D and 2D DFT spectral estimates
erences therein), although they are not commonly used for i@ontrollable fashion by adding a, generally, small correctior
NMR data processing. (For a comparison of LP-ZOOM with 1iym computed by RRT. That is, an XFT spectral estimate ma

FDM see Ref.11).) _ o _ be written in the form
In another linear algebraic spectral estimation technique, aris-
ing from FDM and called regularized resolvent transform (RRT) I(s) ~ XFTy = DFTy + Ay, [7]

(17), the solution of either the AR Eq. [3] or the HIP [4] is

avoided. The spectrum is estimated directly using the resolvgyiere the second term is an RRT-based estimate Mth®FT
formula derived by substituting the assumption [5] into Eq. [1femainder,

1(s) = i(d>|0”|d>)z‘” = (d| {i(o/z)“ — %} | D) AN = ZN c(n)z™". (8]
n=0+t n=0 n=

— (@] { _ }} ). [6] The XFT, therefore, extracts spectral features lost by limita
1-U/z 2 tions of the finite DFT. The RRT requires regularization, de-
pending on a parametey, that controls the artifact suppression
When the data fit the Lorentzian assumption (i.e., one of thad level of resolution. Wheq = oo the correctionAy, van-
equations [3], [4], or [5], which are all equivalent) well, bothishes (low resolution); finite values qfgive nonzero correction
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FIG. 1. Chemical shift correlation spectra of the metalloprotein rubredoxin. The RRT for the severely truncated data gives nonuniform lineshapes anc
some of the features. The DFT for the severely truncated data has correct lineshapes and features, but has artifacts due to the truncation. TévéoXFT
yield the DFT spectrum without artifacts even when the high-resolution estimation fails. In this example, the spectra have been calculatethavitfigpeof
1500x 1600 Hz, with 200 spectral points in each dimension. The RRT and XFT spectra for the truncated data were both obtaikgg usiBg. The RRT of
the longer signal haéy, = 80.

(high resolution), provided the data have not decayed to zero doranyM < N, where we have defined the state vectbgs=

ring the acquisition period. Using exact arithmetic for data sefs®. It is convenient to choossl = 2M. We can now evaluate
satisfying, e.g., the form [4] witiN > 2K and infinitesimally the corresponding matrix element of the resolvent in Eq. [9]
small values ofg, the XFT estimate gives the exact result. lusing the basi§®,} (n =0, ..., M — 1). (A more numerically
should be emphasized thaily is not computed by processingefficient basis is a Fourier-type basis, but this will be discusse
any kind of residual signal or by extrapolating the data. Béater.) Given the assumption [5], the elements of the sgMare
cause extrapolation is avoided, the common exponential insh-overlap matrix [W]nm := (®n|®Pm), the evolution operator
bility does not occur in XFT. An example of 2D XFT in actionmatrix [Ui]nm = (d>n|0 |®m) and the columrM x 1 vector

is shown in Fig. 1. It is clear that, although the resolution ef€y], := z-™(®,|Prm) are given in terms of the available signal
hancement of the spectrum, compared to DFT, is not enormopsintsc(n):
in this case of severely truncated data, XFT does suppress the

DFT artifacts and reveals some small spectral features that are
missing in the DFT spectrum. At the same time, the XFT line-

shapes remain well behaved. In the next sections we derive the

1D and 2D XFT and examine their behavior using both 1D and

2D NMR data.

[UiJam = c(n+m+1),
[UO]nm = C(n + m), [10]

[Cmln = 2 Mc(n + m).
Now by replacingdy and (1— U /2) in Eq. [9] by their matrix

representations [10], the correction term becomes
The correction term [8] is estimated by analogy with Eqg. [6]

2. 1D XFT

using Eq. [5], Ay~ CYR™ICpy [11]
AN = i(@(g/z)n@) — 7N (CDM i(lj/z)n <I>N_M> with the M x M matrix-pencilR = Up — U;/zandN = 2M.
! o Numerical solution of Eq. [11] may scale a\® if one does
N not take advantage of the special Hankel structuie éfFourier
- (cpM z _ ‘ q;NM) , [9] basis has proven to be very efficient for such problegnd.Q.
1-Uy A small Fourier subspade; } of sizeKyin <« M is constructed
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by choosingKyin complex numbers on the unit circly = Since a small subspace, rather than the complete b&sis
e (j =1,..., Kyn) and using is used to evaluate the resolvent, the expression [18] must |
viewed as an approximation to Eq.[11] with convergence pa
B rameterKi,. However, an acceptable convergence is usuall
Q= )y [12]  achieved for sufficiently small sizes in the ranigi, ~ 10—

n 100. Moreover, in the Fourier basis, the matrices are much le:

In thi the tild ¢ tici i boli ill-conditioned, which makes them easier to handle numerically
(In this paper the tide over vectors or matricies will Symboliz€ 3, jike jn RRT 17), numerical evaluation of the resolventin
the expressionin the Fourier basis.) The efficiency of the Four

basis d d how th . h | ¢ E&. [18] requires regularization. For example, in the case whe
asis aepenas on now e.ponoi.ﬁare chosen. in mos casesEq_ [5] is satisfied exactly (i.e., the Lorentzian assumption i
an equidistant grid is effective, with spacing

exact) for the signat(n), the rank ofR is K if M > K, so the

full M x M matrix R is singular and, therefor®&®—* does not
[13] exist. In a Fourier basls representation with sm@l, <« K,
the Kyin x Kyin matrix R will not be exactly singular. More-
over, in the presence of noise it would unlikely be singular for

the basis is localized in the frequency domain, the diago y Kwin- However, it can still be ill-conditioned. There are sev-

elements of the matricies will dominate, and the off-diagonSfaI methods to deal with this situatict, such as Tikhonov

elements will drop off as a sinc function. This allows an acc&ggularizationl?, 19, butin this paper we consider the singular-

rate estimate of the inverd®™! in a small subspace IeadingvaIue decomposition (SVD). AIthqugh thg latter is numerica]ly
to numerically cheap matrix inversion. A further gain may pdnore expensive than the former, it can still lead to a numerice
achieved by using a multiscale Fourier bagid) @ith a nonuni- saving when results at several regularization levels are neede
form set ofyp;, containing information about the entire spectrurﬁhe SVD of the square matrR is defined by

rather than just the spectral window. The multiscale basis is not

<
-

Il
o

_2n
T RMt

Ag

and adjusting paramet®r> 1 (e.g., one can use=1.2). Since

used here for simplicity. B R=VEW [19]
The matrix elements of thK i, x Kyin Square matriced; ) _ ) ) _
; with unitary matrices/ andW andX = diag(,), real and di-
andU, can be computed usind@) th unitary matrices/ andW and: = diagfn), real and d
agonal;V' defines the Hermitian conjugate ¢f Since we can
) A (1) (y; /i)™ ©rDM-D) now write R-1=W'X "1V, the problem then becomes that of
[Oplj =8> ~—=—2212 3" y"c(n+p), regularizing the diagonal matriX 1. Here the truncated SVD
o1 1-VYilYi n=oM (i.e., setting E; ]y = O for very small singular values, be-

[14] low a certain threshold) is not recommended. Instead, a mol
uniform regularization may be employed using, for example,

whereS defines the symmetrization operator over the variables

-1 .
y; andy;, 11 o if on > ¢

: : ) [Zqln = {qul, otherwise [20]

Sdyi.Yi) =90, Yi) + 9y ). [15]
or
For j = j’ we have
[Eal]nn = 026:_ : [21]
2M-_2 n

-~ —aena M
[Upljj = ; yi (M= IM =n—1j)c(n+ p). [16] In this paper we employed Eg. [21], while we were informed

recently that Eq. [20] could be more effectia.

Themth state vecto®,, in the Fourier basis isé,i, x 1 column  Regularization leads to the ultimate well-behaved expressic
vector with elements to evaluate the correction in the 1D XFT,

M-1 An ~ CLWIE VCy, 22
Cal; =2™ Y y;"c(n +m). [17] N e T 1221
n=0 which is one of the main results of this paper.

The properties of the DFT term used in Eq. [7] may not be
ideal: the DFT is calculated for a truncated data set and is n
apodized. For this reason, the Gibbs oscillations in the spectru
NT & g are quite intense. These artifacts are compensated for by the ¢
Ay~ CyR™Cw. (18] rection in the XFT which, in turn, must be large and oscillatory.

Now defining theKyin x Kuwin matrix-pencilR = Uy — Uy /zin
the Fourier basis, the correction term becomes
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Although in our numerical tests this did not cause problems, p¢y_sox
tentially, it can be a source of instability. For this reason itmay b
beneficial to calculate a correction to the already apodized DF
spectrum, so that the large oscillations need not be compensa

for. An example of such procedure is given in the Appendix. N=5000
XFT (no regularization)

Converged FT

2.1. Numerical Example: 1D XFT

The XFT of an experimental NMR data set can be examined1
determine the role of each term. This is best accomplished in t}
1D case as the correction to the baseline is evident. In Fig. 2 v
show an interesting spectral region ofHzyrido[1,24a: 3,4-
b]diinole processed by DFT and XFT. The DFT was calculatet
using bothN = 32000 andN = 5000 data points for compari-
son (upper traces). The lower three traces were computed usi
only 5000 of the available data points, which is short enoug
that the DFT spectrum results in some truncation artifacts, sut
as Gibbs oscillations, and insufficient resolution to resolve th Apodized DFT
doublets present in the DFT using 32,000 points. The correctic
(the bottom trace) has oscillations equal and opposite to the ¢
cillations in the DFT. When added together these cancel, givin T '
the correct baseline in the XFT spectrum. Furthermore, the cor?
rection also contains features that improve the resolution of the:1G. 3. The XFT spectra generated for a range of regularization paramete

DFT, revealing some splittings that could not be obtained withare compared to the DFT spectrum using the same number of data poin
(N =5000). The latter was apodized with a cosine weighting function. The
fully converged DFT spectrum using the entire data set is also shown. As
increases, the XFT loses resolution, but still contains as much information a
the DFT. In this case, the optimal value pis around Ix 10-3, where the small

DFT N=32000 splittings can be resolved with artifacts of the nonlinear processing suppresse

XFT q=5x10"

XFT g=5x10"

1 I
-650 -600 Hz

the truncated DFT alone. In this example the regularization pa
rameteiq was optimized for maximum resolution enhancement.
It should be noted that an optimalis roughly proportional to
the factorA"=N Y"1\ [c(n)|, so it is convenient to consider
the scaled quantity — q/A/, which has a sensible order.

Now we examine the behavior of the XFT as a function of
g. For very largeq, the regularization parameter will dominate
the resolvent and the correction will be zero. In this case, thi
spectrum will be identical to the DFT. Whenis very small,
the correction term will be nonzero, yielding a high-resolution
spectral estimate similar to the RRT 7 spectral estimate. For
intermediate values af, XFT will generally give different re-
sults from the RRT.

The effect of changing| is demonstrated in Fig. 3. For no

N=5000
DFT (apodized)

XFT

DFT (no apodization)

Correction

| regularization ¢ = 0), an artifact is present at650 Hz, which

| . is removed by performing the calculation with="5 x 1075.

-600 Hz  Whenq is set quite highd =0.5), the XFT becomes essen-
FIG.2. Aninteresting region of the 1D NMR spectrum ofd2pyrido[L,2- tially equwal_ent to the apodized I_DFT._ In this manner, even if the

a:3,4b]diinole, processed by the XFT using a truncatdt= 5000) data set. XFT C?-nnOt Incréase th? re§0|Ut|0n’ it can still smooth the DFT

The figure illustrates the behavior of each term involved in the calculation of tiemoving the Gibbs oscillations.

XFT. The XFT is obtained by adding together the unapodized DFT term and the

correction term calculated with a regularization parametertbht is optimized

for this case. The correction term exactly cancels the Gibbs oscillations present

in the nonapodized DFT. It also adds small terms to increase the resolution of L . .
some peaks, allowing some doublet structures to be identified. For comparisofAlthough t.he. 1[_) XFT is mterestlng.fc.)r evaluatmg the suc-
the apodized DFT spectra fof = 32000 andN = 5000 are presented. cesses and limitations of the method, it is the multidimensiona

l T
-700 -650

3. 2D XFT
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generalization of XFT that is most useful. The simple reason is 7-2M

that there is usually no acquisition time limitation in 1D NMR Ay = Z z,"™ <¢M1 N L M1,0>
experiments. In 2D, however, the difficulties associated with the nz=0* 1-Uy/z

data truncation are much more pronounced. As shown in Fig. 1 Mo—1 7~ Mz ,—2M

the high-resolution techniques, such as RRT, can be used quite + Z z,"™ (CDMl,nz CR cDMLMZ), [26]
successfully with signals severely truncated along the interfero- np= 1-Uy/

metric dimensions, provided the total si2é, x N, of the 2D oM, oM,

data array is sufficiently large. WhéMy x N is too small, RRT Ag = (fDMl M, 4 % q)Ml,Mz)-

may fail catastrophically. XFT is manifestly a much less aggres- 1-U1/z11-Uy/2,

sive method as it tries to correct the DFT spectrum in a control-

lable fashion, sometimes giving only marginal improvement, but . .
. . 2 : The arising resolvent matrix elements can now be evaluate

sometimes leading to a significant resolution enhancement.

on the basisby, ,, of size M; x M. However, as in the 1D
We consider a 2D time signal on an evenly spaced 2D tim
ase it is advantageous to implement a Fourier basis. The latt
grid c(nq, ny) := c(n1t1, N212). The goal is then to estimate the.

infinite time 2D DFT spectrum using the scheme IS mtroduped by selectinglywin Kz‘“."” - KW".‘ grid of.pomts_
(91, ¥2j) inachosen 2D frequency window with spacings given

e e by Eq. [13],
l(s192) = Y. D z™z"™c(n. ny)
1=0% np=0+ M;—1 My—1
4 —n n
= DFTyyn, + A1+ Ao + Ag [23] UEDY Z Yij Yaj Pz [27]

n;=0 np=

with z; = e 123 andz, = e~ 2%, Thefinite 2D DFT and the three
correction terms arise from breaking the infinite 2D summatioMith yij =€~ "men-and | yoj =€ inm¢2 The square complex

domain into four rectangu|ar reg|0ns_ symmetrlc matrices OU 1 U2 and the |dent|ty operator (the
overlap matrix) in this basis are defined By, U,, andUy, ac-
1 Np1 cordingly. Their matrix elements are given here without deriva
DFTy,N, = Z Z z,™z,™c(ny, ny) tion (see Ref.11)). To consolidate the expressions, three new
=0+ Ny—0* data sets are defined:
Ay = z;"z,™c(ng, n
' Zm nzzz 17 e, ) Co(N1, N2) = c(nyg, ),
0 ci(ny, n2) = c(ny + 1, ny), (28]
Ap = Z Z z,™z,™c(ng, ny)
R s C2(ng, N2) := c(ng, Nz + 1).
— —N1,—N2
As = Z Z 2 "2 e, Ng). 241 The matrix elements of the matrices for bothyj # yij and

=Ny np=

Yoj # Y- can be computed by

Generalizing the 1D quantum ansatz [5] the 2D signal is as-

Z\ngr;ssotr?fse?aetr;?éatzi S)L/J two commuting complex symmetnE:Ul] _s Z (=) (yaj /yaj )M
1 2. i S 1—y1j/Nj
c(ny, ny) = (@ [U10%| ). [25] g Y ED /Y2y )2
g1 L Y2i/ Y2y
Now using M; = N; and M= N, and definingdy, n, = (61+1)(M1—1) (02+1)(M2—1)
U052 @, by analogy with Eq. [9], we can write x Y > vty e ny),  [29]
ni=o1 M1 Ny=07M>
M;—1 Z;ZMZ
= 7n1 —_— 2 ol . . .
A= Z+ Z (inv'\"z 1-U,/2, Po, MZ) whereS; and S, define the symmetrization operators over the
m=0 corresponding pairs of variables as, e.g.,
Mi—1 Z—Mlz—ZMg
+ Z ZInl (cbnl,Mz ﬁ q)MLMz)v -
n;=0 —U2/2 S19(y1j» Yijr) = 9(¥aj. Yaj) + 9(Yj» Y1j)- (30]
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Foryij = y1j: andys; # Yz we have

Ul = S Z

O'2=O,l

(—1)72(y2j / yoj )2 M2
1—voi/Yoj

2M;—2 (o2+1)(Ma—1)

—Ng,,—N
X Z Z Yij Yz cGi(na, )
n,=0 no=0,2M>

x(Mg — My —ny — 1)), (31]

which can trivially be rewritten for the symmetric caseygf #
y1js andyp; = yoj.. For the case of bothy; = yij andys; =
yoj, i.€., the diagonal elements of thlematrices, we have

2M;—2 2Mp—2

Ul = D Y vi™ysa(n, o)

n=0 n,=0

x(M1 — [Mg —ng —1))(Mz2 — [M2 — nz — 1]). [32]

TheU matrices are used to construct the matrix pencils

Ri=Uo-Uy/z, (=12) [33]
_Now define theK yin x 1~column vector§:ml,mz with elements
[Crum]j = z,™2,™(®|Pm, m,), Which can be computed
using

[Crmlj =22

Mi—1Mp-1

X Z Z Ya; " Ya; 2C(N1 + My, Ny + my).

n=0 n,=0

[34]

In addition define the columidyin x 1 vectorsf:FTmz andf:ml,FT

obtained fromf:ml,mz by summation along one of the dimen

sions,

M;—1
CFT,mzz § le,mz»
m;=0

Mz—1
le,FT = Z le.mz-

my=0

[35]
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Although the above derivation may appear quite tedious, th
result itself is straightforward: the arrays entering Eq. [36] are
all obtained from the data(n, n,) by simple linear transforma-
tionsinvolving DFT. Just as inthe 1D case, numerical evaluatior
of the resolvent&®;* andR; * requires regularization, which is
implemented here using SVD (Egs. [19]-[22]). Since usually
the results very smoothly depend on the regularization param
terq, each resolvent can be treated with the sgrteereduce the
number of adjusting parameters. Regularization by SVD, onc
again, offers the advantage of generating multiple spectra wit
differentq, adding little numerical cost. Since each matrix pencil
depends on one of the frequenc&®r s,, the total number of
SVD applications to construct the 2D spectrum on the 2D gric
in the frequency domaiis, x Ns, is only Ns, + Ns,. Because
the most numerically expensive part of XFT is associated witt
SVD, the total numerical cost to construct 2D XFT scales ac
~(Ns, + Ng,) x K3, whereK, is typically small (e.g., 100).

win?

3.1. Numerical Example: 2D XFT

Both FDM and RRT, the predecessors of XFT, have beel
demonstrated previously to lead to significant resolution en
hancementq, 17), provided the data fit well the Lorentzian
form. As shown in Fig. 1, RRT may fail when the latter is not
the case (the data set is too small). In this case very strong reg
larization (largeq) is needed to remove the artifacts and correct
the lineshapes, eventually leading to a low-resolution spectrur
that may become even inferior to the DFT spectral estimate
Unlike the FDM and RRT, the regularization in XFT does not
generally reduce the resolution below that of the DFT; i.e., it s
essentially bounded from below by the FT uncertainty princi-
ple. Usually a compromise, corresponding to some finite valu

of g, exists, leading to the Gibbs oscillation removal and resolv:

ing some peaks (not necessarily all of them) that can be fitted b
Lorentzians. This is demonstrated in Fig. 4 where we present al
other more challenging numerical test. Each of the XFT spectr
shown for different values df offer a resolution enhancement
over the DFT, albeit the lineshapes are distorted for smaller val
ues ofg. With g = 0.001, the regularization is optimal, and the
splittings are resolved without any artifacts present. The result
of two LP spectra, calculated using the NMRPipe progra, (

The numerical expressions for the correction terms in tf&€ Presented as a comparison to the XFT. As XFT does n

Fourier basis can finally be written
~ ~ TH-1F lor moax
A1 = (Com, + Cmym,) RS Crrom, — ECO,MZRQ Com,,

~ ~ ~ ~ 1~ ~ ~
Az = (Cmp.0+ Cwym,) 'RT*CuyFr — ECLLoRflCMI,o,

Az = éLlymzéilgoégléMl,My [36]

use the data from the entire constant time period, it is compare
to a standard LP algorithm. However, for constant time data
mirror-image LP (MI-LP)R2) is commonly employed and is

also presented. Both LP spectra show an improvement over tt
FT, but some peaks that are resolved by the XFT are not i
proved. Recently, using ideas similar to MI-LP, FDM has beer
implemented to use data from the entire constant time perio
2T (23), which effectively doubles the data size. This led to a
substantial resolution enhancement. Although this method he

Equations [23]-[36] constitute the main result of this papemot yet been implemented for XFT, once it is implemented, we
Armed with these equations we can construct the 2D XFé&xpect a further improvement.
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XFT q=5x10"* XFT g=1x10"2 XFT g=5x10"
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FIG. 4. Comparison of the XFT of a small region of the carbon-hydrogen CT-HSQC of Ubiquitin with the FT and LP methods. The spectra were proc
for several values df to illustrate the behavior of the method. The XFT and FT spectra were processed using the entire Nate- St andN, = 2048) with
a spectral width of 350 Hz in the proton dimension and 400 Hz in the carbon dimension. The calculation was performed for 200 spectral points ingach dirr
and for the XFT,Kwin = 60. The FT and LP spectra were apodized with a cosine-squared function. The LP and the MI-LP are 16th order, calculated usi
NMRPipe program.

4. SUMMARY (see Eq. [36]), it is numerically more intensive than RRT, or a

~least requires more intelligent programming.
XFT has been presented as a useful spectral estimation

method. The fact that XFT is a function of the regularization
parameteq has the advantage of being able to tune the spec-
trum between high-resolution spectral estimation and the finite
DFT. In thg case where the Qa_tq sat.isfy the Lorentzian assump-  Alternative Expressions to Evaluate 1D XFT
tion [4] (or its 2D analogue), infinitesimally small regularization _ _ _ _
is required and the XFT gives essentially the exact infinite time Here we rewrite Eqgs. [7] and [9] for variable truncation size
DFT. If the Lorentzian assumption is not met, in the case ofd =m+m

@m’)

APPENDIX

very short, or noisy signal, the level of resolution is controlled by

adjusting the regularization. Only having a few parameters that

need to be adjusted, and having a broad range over which the - =1 n z

parameters give usable results, also makes XFT much easier to 1(s) = Z c(mz " + (q;m 1_70/2

use than most other methods. XFT has numerous similarities to n=0"

the RRT, albeit the nonlinear contribution (the correction term) = DFTniny + Amsr,

in the former is generally relatively small. For this reason, prob-

lems that may severely affect the performance of either FDM or

RRT may only cause small problems in the XFT. which holds for anym andnY. We can now averagg(s) over
The main disadvantage of the XFT is that, unlike FDM, indithese two free parameters. This leads, in principle, to an infinit

vidual resonances are not calculated and cannot be manipulatechber of possible expressions, depending on the weightir

afterward. While RRT can generate other spectral represerftaaction. Interestingly, for the ideal data, i.e., satisfying Eq. [4],

tions (not necessarily the infinite time DFT spectral estimategny such expression would be numerically exact, while the dif

XFT is restricted solely to the DFT spectral estimation. Alsderence would be observed in practical applications using nor

due to many resolvent matrix elements to be computed in XfpErfect signals. Here we derive just one such expression that

—(m+m')
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FIG.5. The weighting functiorg,, used in the averaged XFT DFT term.

compact and numerically efficient,

I(s) = Z Z {DFTmim + Amen}

m=0n'=

(M +1)2

= DFTay + Ay [A.1]

where the first term simply becomes an apodized DFT

2M-1

DFTay= Y Z"c(N)0h

n=0*

[A.2]

with weighting functiong, given by

B (n+1n+2)
oh=1 M+ 17 n<M-1

_ (@M —n)(2M —n + 1)

’ n>M7
2(M + 1)2 =

[A.3]

shown in Fig. 5, which has a strong apodizing effect. On itd"
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similar to that ofJg in Eq. [14] upon substitution of;- by z:

[éav]j =

UO(Z’ yJ)
_1y(y; /2)0M+D oMEM-1
0=0,1 —Vi/z n=o(M+1)

a(z/y )(TM o(M=1+M

(=1y(z/y;)™ n
+ Yy el T2y > 2.

o=0,1 n=ocM

[A.6]

This result can easily be generalized to the 2D case, which |

not done here.
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1.

5.

own, g, might not be an optimal weighting function, butin XFT
the corresponding resolution loss can be compensated for. The; ¢ Hochand A. S. Stern, “NMR Data Processing,” Wiley-Liss, New York

correction term after averaging becomes

Aa =CIR™Cy [A.4]
with
LY
Cav e TVENETTY Z7mCm
M +1) —=
andCp, is defined by Eq. [10].
In the Fourier basis the correction becomes
Aav - é;—vﬁziléa\/, [A.5]

8.

10.

11.

12.

elements ofC,, are obtained by recognizing that its form is
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